General Relativity in Evolutionary Biology DRAFT

EDIT, July 2015:

See the full draft at the phil-sci archive: http://philsci-archive.pitt.edu/11557/

Also check out my other Research.

Below are old notes:

—-

I’ve discussed relativity in evolutionary biology with regards to uniform change but, as with the Special Theory of Relativity in physics, we want a theory that covers all change.

This means that insofar as relativity applies to biology under uniform motion, i.e. when a species is reproducing in a regular fashion, we want a theory of relativity that applies to biology even when a species is undergoing non-uniform motion, i.e. when the species reproductive cycle has undergone a serious change.

It is a fundamental equivalence of evolutionary biology that the struggle for survival and natural selection yield the exact same results.  This relationship has yet to be interpreted.  If we consider a person in love, financially secure and who wants nothing more than to raise children for foreseeable rest of his life.  That person may view this situation as the culmination of his struggle to survive and replicate.  That person may equally view the situation to be nature selecting him as suitable to continue life.

For what apparently are good reasons action at a distance is not allowed.  Struggle for survival does not occur at a distance; ‘struggle’ seems to inherently imply some local interaction.  Natural selection, however, is much more amorphous in nature: how exactly does nature select?  I suggest that we think of natural selection as a biofield that acts upon organisms.

Inertial ‘fitness’ and Gravitational ‘fitness’

The fitness of a thing creates a (teeny) natural selection field.  The fitness of a species creates a (small) natural selection field.  The fitness of an ecosystem creates a (large) natural selection field.